|
Frege's Puzzle
In his 1879 Begriffsschrift (or "Concept-Writing"), Gottlob Frege developed a propositional calculus to determine the truth values of propositions from their general form, not from any particular predicates (using specific words, names, properties, attributes, relations, etc.) The propositional calculus, a truth-functional analysis of statements as a whole, is widely considered to be the greatest advance in logic since Aristotle, whose logic of syllogisms was a predicate logic, where truths depend on the meaning of individual terms in the predicate (or the subject).
In Frege's 1892 Über Sinn und Bedeutung ("Sense and Reference"), he distinguished the reference (name, denotation, extension, signifier) from the sense (meaning, connotation, intension, significance). He called the reference "direct" and the sense "indirect." Frege was very clear about how the Bedeutung, literally the pointing out or indication of an object or concept, generates different ideas in the minds of different persons.
He says that all persons probably get a basic "sense" of a reference, from the common knowledge of things passed down through the generations, but that the particular ideas, or representations ( Vorstellung) in each mind will be different, because everyone has had a different set of experiences, different memories. This agrees perfectly with our idea of the Experience Recorder and Reproducer (ERR). The "meanings" are dependent on what a given mind plays back when stimulated by a new experience. Frege said ideas could only be compared if they were present to the same consciousness, which is of course impossible.
What is sometimes called Frege's Puzzle is how two names for the same object can be distinct words (his example was the Morning Star and Evening Star) and yet in some respect be identical? His word was Gleichheit ("sameness"), mistranslated into English as identity.
Here begins a vast problematic in philosophy for the next 135 years
Frege speculated that two references to the same object could therefore be considered "identical" in that respect even if the "names" are distinct.
Frege was following Gottfried Leibniz, who said, "To suppose two things indiscernible is to suppose the same thing under two names." Here is how Frege described it...
Frege said he uses sameness in the sense of identity and understands "a=b" in the sense of "a is the same as b" or "a and b coincide." It was mistranslated in English as identity.
Sameness gives rise to challenging questions which are not altogether
easy to answer. Is it a relation ? A relation between objects, or between
names or signs of objects? In my Begriffsschrift I assumed the latter.
The reasons which seem to favor this are the following: a = a and
a = b are obviously statements of differing cognitive value; a = a holds
a priori and, according to Kant, is to be labeled analytic, while statements
of the form a = b often contain very valuable extensions of our
knowledge and cannot always be established a priori...
Now if we were to regard sameness as a relation between that which the
names "a" and "b" refer to, it would seem that a = b could not differ
from a = a (i.e., provided a = b is true).
Frege is saying that two names referring to the same thing can be in some respect "the same" because the thing they refer to is identical to itself. They are the same qua references
A relation would thereby be
expressed of a thing to itself, and indeed one in which each thing
stands to itself but to no other thing. What is intended to be said by
a = b seems to be that the signs or names "a" and "b" refer to the
same thing, so that those signs themselves would be under discussion;
a relation between them would be asserted. But this relation would hold
between the names or signs only insofar as they named or designated
something. It would be mediated by the connection of each of
the two signs with the same designated thing. But this is arbitrary.
Nobody can be forbidden to use any arbitrarily producible event or
object as a sign for something. In that case the sentence a = b would
no longer refer to the subject matter, but only to its mode of designation;
we would express no proper knowledge by its means. But in many cases
this is just what we want to do. If the sign "a" is distinguished from the sign
"b" only as object (here, by means of its
shape), not as sign (i.e., not by the manner in which it designates something),
the cognitive value of a = a becomes essentially equal to that of a = b, provided
a = b is true. A difference can arise only if the difference between the signs
corresponds to a difference in the mode of presentation of that which is designated...
If we found "a = a" and "a = b" to have different cognitive values,
the explanation is that for the purpose of knowledge, the sense of the
sentence, viz., the thought expressed by it, is no less relevant than its
referent, i.e., its truth value. If now a = b, then indeed the referent of
"b" is the same as that of "a," and hence the truth value of "a = b" is
the same as that of "a = a." In spite of this, the sense of "b" may differ
from that of "a," and thereby the sense expressed in "a = b" differs
from that of "a = a." In that case the two sentences do not have the
same cognitive value.
(Sense and Reference, pp.209, 230)
Names and Reference
Frege's puzzle is clear, the names "a" and "b" refer to the same thing, but the names are only identical qua references to the object. They have different senses, or meanings.
Since Frege, generations of philosophers have puzzled over different names and/or descriptions referring to the same thing that may lead to logical contradictions when one term is substituted for the other in a logical statement. Frege's original example was the Morning Star and Evening Star (often called Hesperus and Phosphorus) as names that refer to the planet Venus. Do these names have differing cognitive value? Yes. Can they be defined qua references to uniquely pick out Venus. Yes. Is identity a relation? No. But the names are relations, words that are references to the objects. And words put us back into the ambiguous realm of language.
Over a hundred years of confusion in logic and language consisted of finding two expressions that can be claimed in some sense to be identical, but upon substitution in another statement, they do not preserve the truth value of the statement. Besides Frege, and a few examples from Bertrand Russell ("Scott" and "the author of Waverly." "bachelor" and "unmarried man"), Willard Van Orman Quine was the most prolific generator of paradoxes ("9" and "the number of planets," "Giorgione" and "Barbarelli," "Cicero" and "Tully," and others).
Just as information philosophy shows how to pick out information in an object or concept that constitutes the "peculiar qualifications" that individuate it, so we can pick out the information in two designating references that provide what Willard Van Orman Quine called "purely designative references." Where Quine picks out information that leads to contradictions and paradoxes (he calls this "referential opacity"), we can "qualify" the information needed to make the terms referentially transparent.
Quine's Paradoxes
Quine generated a number of apparently paradoxical cases where truth value is not preserved when "quantifying into a modal context." But these can all be understood as a failure of substitutivity of putatively identical entities. Information philosophy shows that two distinct expressions that are claimed to be identical are never identical in all respects. So a substitution of one expression for the other may not be identical in the relevant respect. Such a substitution can change the meaning, the intension of the expression.
Perhaps Quine's most famous paradox is his argument about the number of planets:
(1) 9 is necessarily greater than 7
for example, is equivalent to
'9 > 7' is analytic
and is therefore true (if we recognize the reducibility of mathematics to logic)...
("Notes on Existence and Necessity," in Journal of Philosophy, 40 (1943) p.121)
Given, say that
(2) The number of planets is 9
we can substitute 'the number of planets' from the non-modal statement (2) for '9' in the modal statement (1) gives us the false modal statement
(3) The number of planets is necessarily greater than 7
But this is false, says Quine, since the statement
(2) The number of planets is 9
is true only because of circumstances outside of logic.
Ruth Barcan Marcus analyzed this problem in 1961, which she calls the "familiar example" :
(27) 9 eq the number of planets
is said to be a true identity for which substitution fails in
(28) ◻(9 > 7)
for it leads to the falsehood
(29) ◻(the number of planets > 7).
Since the argument holds (27) to be contingent (~ ◻(9 eq the number of
planets)), 'eq' of (27) is the appropriate analogue of material equivalence
and consequently the step from (28) to (29) is not valid for the reason that
the substitution would have to be made in the scope of the square.
("Modalities and Intensional Languages," in Synthése, Vol. 13, No. 4 (Dec., 1961), p. 313)
The failure of substitutivity can be understood by unpacking the use of "the number of planets." It is not a purely designative reference, as Quine calls it.
In (27), "the number of planets" is the empirical answer to the question "how many planets are there in the solar system?" It is not what Saul Kripke would call a "rigid designator" of the number 9. The intension of this expression, its reference, is the "extra-linguistic" fact about the current quantity of planets (which Quine appreciated).
The expression '9' is an unambiguous mathematical (logical) reference to the number 9. It refers to the number 9, which is its meaning (intension). Kripke mistakenly claims that '9' is a rigid desgnator of the number 9 "in all possible worlds." This is false. The mathematical concept of the number 9 is true in all possible worlds.
We can conclude that (27) is not a true identity, unless before "the number of planets" is quantified, it is qualified as "the number of planets qua its numerosity, as a pure number." Otherwise, the reference is "opaque," as Quine describes it. But this is a problem of his own making.
As Marcus says, when we recognize (27') as contingent, ~◻(9 eq the number of planets), it is not necessary that 9 is equal to the number of planets, its reference to the number 9 becomes opaque.
The substitution of a possible or contingent empirical fact that is not "true in all possible worlds" for a logical-mathematical concept that is necessarily true is what causes the substitution failure.
When all three statements are "in the scope of the square" (◻), when all have the same modality, we can "quantify into modal contexts," as Quine puts it. Both expressions, '9' and 'the number of planets, qua its numerosity,' will be references to the same thing, They will be identical in one respect, qua number. They will be "referentially transparent."
The New Theory of Reference
Frege's Puzzle motivated several philosophers to develop a new theory of how words refer to objects, especially in modal contexts. It gave rise to Saul Kripke's theories about "possible world semantics."
When in the 1940's, Ruth C. Barcan and Rudolf Carnap added modal operators to quantification theory, Quine strongly objected, developing his demonstrations that "quantifying into modal contexts" leads to "referential opacity" and logical nonsense like "the number of planets is necessarily greater than 7."
This was nothing but the fact first seen by Frege that different descriptions, different names that are "disguised descriptions," have different cognitive value, different "senses," that cannot be substituted for one another in any logical context, not just modal contexts, as Quine thought.
What we call a "concept" about a material object is some subset of the information in the object, accurate to the extent that the concept is isomorphic to that subset. By "picking out" different subsets, we can sort objects. We can compare objects, finding them similar qua one concept and different qua another concept. We can say that "a = b" qua color but not qua size.
Frege said that "the Morning Star = the Morning Star" is an identity and therefore tautological and tells us nothing. But "the Morning Star = the Evening Star" has cognitive value. In 1961, Ruth Barcan Marcus said it tells us something empirical about Venus in the morning and evening skies. She suggested less ambiguous, purely designative names would have no cognitive value beyond their reference to named objects.
Her work gave rise to the sophisticated modern idea of the " necessity of identity."
In modern times, Frege's insight has been defended with elaborate modal logical arguments, beginning with Barcan in 1947, using Leibniz's Law about identity and indiscernibility, that seem to suggest that for any a and b, if a = b (even contingently), then necessarily a = b.
∀x ∀y (x = y) ⊃ [◻(x = x) ⊃ ◻ (x = y)]
Frege in English and German
Because there are well-known difficulties with the English translation, we are preparing a bilingual version of the Frege original German and the popular translation by Max Black and Peter Geach. So far we provide the first few critical pages and important last paragraph.
Black's choice of English terms was complicated, because the German terms Sinn and Bedeutung are both frequently translated as "meaning." Black translated it as "reference." He could have chosen "denotation" following Bertrand Russell ("On Denoting") and John Stuart Mill, who very nicely distinguishes denotation from connotation (meaning). .
Our English title would then have been Meaning and Denotation, and would have very likely been much less confusing to modern readers. (Russell suggested this very translation in his 1905 On Denoting, p. 383)
The etymological base of bedeuten is to indicate, to point out (ostension is used by the logical philosophers). The root of denotation is to mark, to provide a sign for something. To designate is very close, and Frege uses the German equivalent bezeichnen and Bezeichnet (signified). But its use in recent philosophy is to name. The English denominate is literally to name, German benennen, but broadly to assign things to categories, which much of linguistic philosophy tries to do with set theory and logic.
To refer is etymologically to send back, to relate one thing to another. This is what a word or name bears to an object, so perhaps is what Frege then and Quine and Kripke recently are trying to explain.
Black provided a list of translations for several important terms we list here.
Anschauung - Experience
Art des Gegebenseins - Mode of presentation
[Gegebenseins is givenness, being given]
Bedeutung - Reference [for the process]
- Referent [for the object]
Black uses Referent for Bezeichnet (Signified)
Begriff - Concept or predicate
Begriffsausdruck - Predicate expression
Behauptungssatz - Declarative sentence
Bezeichnung - Designation
|
Eigenname - Proper name
Erkenntniswerth - Cognitive value
Gedanke - Thought, or Proposition
Gewöhnliche Bedeutung - Customary reference
Sinn - Sense
Satz - Sentence or clause
Unbestimmt andeutender Bestandtheil
- Indefinite indicator or variable
Vorstellung - Conception [Idea, Representation?]
Warheitswerth - Truth value
|
Sense and Reference
|
Über Sinn und Bedeutung
|
Translated by Max Black and Peter Geach
(1948) The philosophical review, 57(3), 209-230.
[Numerical footnotes are in the German original. Alphabetic footnotes are from Black and Geach.
Pages 209-230 are the Philosophical Review. Pages 25-50 the original Zeitschrift.]
25
209
Identity1 gives rise to challenging questions which are not altogether
easy to answer. Is it a relation? A relation between objects, or between
names or signs of objects? In my Begriffsschrift A I assumed the latter.
The reasons which seem to favor this are the following: a=a and
a = b are obviously statements of differing cognitive value; a = a holds
a priori and, according to Kant, is to be labeled analytic, while statements
of the form a = b often contain very valuable extensions of our
knowledge and cannot always be established a priori. The discovery
that the rising sun is not new every morning, but always the same,
was of very great consequence to astronomy. Even today the identification
of a small planet or a comet is not always a matter of course.
26
Now if we were to regard identity as a relation between that which the
names "a" and "b" designate, it would seem that a=b could not differ
from a=a (i.e., provided a=b is true). A relation would thereby be
expressed of a thing to itself, and indeed one in which each thing
stands to itself but to no other thing. What is intended to be said by
a=b seems to be that the signs or names "a" and "b" designate the
same thing, so that those signs themselves would be under discussion;
a relation between them would be asserted. But this relation would
hold between the names or signs only insofar as they named or designated
something. It would be mediated by the connection of each of
the two signs with the same designated thing. But this is arbitrary.
Nobody can be forbidden to use any arbitrarily producible event or
object as a sign for something. In that case the sentence a=b would
no longer refer to the subject matter, but only to its mode of designation;
we would express no proper knowledge by its means. But in
many cases this is just what we want to do. If the sign "a" is distinguished
from the sign "b" only as object (here, by means of its
210 shape), not as sign (i.e., not by the manner in which it designates
something), the cognitive value of a=a becomes essentially equal to
that of a=b, provided a=b is true. A difference can arise only if the
difference between the signs corresponds to a difference in the mode
of presentation of that which is designated. Let a, b, c be the lines connecting
the vertices of a triangle with the midpoints of the opposite
sides. The point of intersection of a and b is then the same as the point
of intersection of b and c. So we have different designations for the
same point, and these names ("Point of intersection of a and b," "Point
of intersection of b and c") likewise indicate the mode of presentation;
and hence the statement contains true knowledge.
It is natural, now, to think of there being connected with a sign
(name, combination of words, letter), besides that to which the sign
refers, which may be called the referent of the sign, also what I would
like to call the sense of the sign, wherein the mode of presentation is
contained.
27
In our example, accordingly, the referents of the expressions
"the point of intersection of a and b" and "the point of intersection of
b and c" would be the same, but not their senses. The referent of
"evening star" would be the same as that of "morning star," but not
the sense.
It is clear from the context that by "sign" and "name" I have here
understood any designation representing a proper name, whose referent
is thus a definite object (this word taken in the widest range), but
no concept and no relation, which shall be discussed further in another
article.B The designation of a single object can also consist of several
words or other signs. For brevity, let every such designation be called
a proper name.
The sense of a proper name is grasped by everybody who is sufficiently
familiar with the language or totality of designations to which it
belongs;2
but this serves to illuminate only a single aspect of
211 referent, supposing it to exist. Comprehensive knowledge of the
would require us to be able to say immediately whether every
given sense belongs to it. To such knowledge we never attain.
The regular connection between a sign, its sense, and its referent
is of such a kind that to the sign there corresponds a definite sense
and to that in turn a definite referent, while to a given referent (an
object) there does not belong only a single sign. The same sense has
different expressions in different languages or even in the same language.
To be sure, exceptions to this regular behavior occur. To every
expression belonging to a complete totality of signs, there should
certainly correspond a definite sense; but natural languages often do
28 not satisfy this condition, and one must be content if the same word
has the same sense in the same context. It may perhaps be granted that
every grammatically well-formed expression representing a proper
name always has a sense. But this is not to say that to the sense there
also corresponds a referent. The words "the celestial body most distant
from the earth" have a sense, but it is very doubtful if they also have
a referent. The expression "the least rapidly convergent series" has
a sense; but it is known to have no referent, since for every given
convergent series, another convergent, but less rapidly convergent,
series can be found. In grasping a sense, one is not certainly assured of
a referent.
If words are used in the ordinary way, one intends to speak of
their referents. It can also happen, however, that one wishes to talk
about the words themselves or their sense. This happens, for instance,
when the words of another are quoted. One's own words then first
designate words of the other speaker, and only the latter have their
usual referents. We then have signs of signs. In writing, the words are
in this case enclosed in quotation marks. Accordingly, a word standing
between quotation marks must not be taken as having its ordinary
referent.
In order to speak of the sense of an expression "A" one may simply
use the phrase "the sense of the expression 'A."' In reported speech
one talks about the sense-e.g., of another person's remarks. It is
quite clear that in this way of speaking words do not have their customary
referents but designate what is usually their sense. In order
to have a short expression, we will say: In reported speech, words
are used indirectly or have their indirect referents.
212 We distinguish
accordingly the customary from the indirect referent of a word; and
its customary sense from its indirect sense. The indirect referent of a
word is accordingly its customary sense. Such exceptions must always
be borne in mind if the mode of connection between sign, sense, and
referent in particular cases is to be correctly understood.
29
The referent and sense of a sign are to be distinguished from the
associated conception. If the referent of a sign is an object perceivable
by the senses, my conception of it is an internal image,
3 arising from
memories of sense impressions which I have had and activities, both
internal and external, which I have performed. Such a conception
is often saturated with feeling; the clarity of its separate parts varies
and oscillates. The same sense is not always connected, even in the
same man, with the same conception. The conception is subjective:
One man's conception is not that of another. There result, as a matter
of course, a variety of differences in the conceptions associated with the
same sense.
A painter, a horseman, and a zoologist will probably connect
different conceptions with the name "Bucephalus." This constitutes
an essential distinction between the conception and the sign's
sense, which may be the common property of many and therefore is
not a part or a mode of the individual mind. For one can hardly deny
that mankind has a common store of thoughts which is transmitted
from one generation to another.4
In the light of this, one need have no scruples in speaking simply
of the sense, whereas in the case of a conception one must precisely
indicate to whom it belongs and at what time. It might perhaps be
said: Just as one man connects this conception and another that conception
with the same word, so also one man can associate this sense
and another that sense. But there still remains a difference in the mode
of connection. They are not prevented from grasping the same sense;
but they cannot have the same conception. Si duo idem faciunt, non est
idem.
30
If two persons conceive the same, each still has his own conception.
It is indeed sometimes possible to establish differences in the conceptions,
or even in the sensations, of different men; but an exact
comparison is not possible, because we cannot have both conceptions
together in the same consciousness.
Let us return to our starting point!
If we found "a=a" and "a=b" to have different cognitive values,
the explanation is that for the purpose of knowledge, the sense of the
sentence, viz., the thought expressed by it, is no less relevant than its
referent, i.e., its truth value. If now a=b, then indeed the referent of
"b" is the same as that of "a," and hence the truth value of "a=b" is
the same as that of "a=a." In spite of this, the sense of "b" may differ
from that of "a," and thereby the sense expressed in "a=b" differs
from that of "a=a." In that case the two sentences do not have the
same cognitive value. If we understand by "judgment" the advance
from the thought to its truth value, as in the above paper, we can
also say that the judgments are different.
Footnotes
1 I use this word strictly and understand "a=b" to have the sense of "a is the
same as b" or "a and b coincide." [Frege's actual word was Gleichheit, "sameness" and he says he uses it in the sense of Identität. But Black and Geach simply use Identity!]
,
A The reference is to Frege's Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens (Halle, 1879).
B See his "Über Begriff und Gegenstand" in Vierteilahrsschrift fur wissenschaftliche Philosophie (XVI [i892], I92-205).
2 In the case of an actual proper name such as "Aristotle" opinions as to the
sense may differ. It might, for instance, be taken to be the following: the pupil
of Plato and teacher of Alexander the Great. Anybody who does this will attach
another sense to the sentence "Aristotle was born in Stagira" than will a man
who takes as the sense of the name: the teacher of Alexander the Great who was
born in Stagira. So long as the referent remains the same, such variations of
sense may be tolerated, although they are to be avoided in the theoretical structure
of a demonstrative science and ought not to occur in a complete language.
3
We can include with the conceptions the direct experiences in which senseimpressions
and activities themselves take the place of the traces which they
have left in the mind. The distinction is unimportant for our purpose, especially
since memories of sense-impressions and activities always help to complete the
conceptual image. One can also understand direct experience as including any
object, in so far as it is sensibly perceptible or spatial.
4Hence it is inadvisable to use the word "conception" to designate something
so basically different.
|
ZEITSCHRIFT FÜR PHILOSOPHIE UND PHILOSOPHISCHE KRITIK
Im Verein mit mehreren Gelehrten vormals
herausgegeben von Dr. J. H. Fichte und Dr. H. Ulrici,
redigirt von Dr. Richard Falckenberg,
Professor der Philosophie in Erlangen.
Neue Folge Hundertster Band.
Leipzig
Verlag von C.E.M. Pfeffer, 1892
25
Die Gleichheit 1 fordert das Nachdenken heraus durch Fragen, die
sich daran knüpfen und nicht ganz leicht zu beantworten sind. Ist
sie eine Beziehung? eine Beziehung zwischen Gegenständen? oder
zwischen Namen oder Zeichen für Gegenstände? Das letzte hatte ich
in meiner Begriffsschrift angenommen. Die Gründe, die dafür zu
sprechen scheinen, sind folgende: a=a und a=b sind offenbar Sätze
von verschiedenem Erkenntniswerte: a=a gilt a priori und ist nach
Kant analytisch zu nennen, während Sätze von der Form a=b oft sehr
wertvolle Erweiterungen unserer Erkenntnis enthalten und a priori
nicht immer zu begründen sind. Die Entdeckung, daß nicht jeden
Morgen eine neue Sonne aufgeht, sondern immer dieselbe, ist wohl
eine der folgenreichsten in der Astronomie gewesen. Noch jetzt ist
die Wiedererkennung eines kleinen Planeten oder eines Kometen
nicht immer etwas Selbstverständliches.
26
Wenn wir nun in der Gleichheit eine Beziehung
zwischen dem sehe wollten, was die Namen "a" und b" bedeuten, so
schiene a=b von a=a nicht verschieden sein zu können, falls
nämlich a=b wahr ist. Es wäre hiermit eine Beziehung eines Dinges
zu sich selbst ausgedrückt, und zwar eine solche, in der jedes
Ding mit sich selbst, aber kein Ding mit einem andern steht. Was
man mit a=b sagen will, scheint zu sein, daß die Zeichen oder
Namen "a" und "b" dasselbe bedeuten, und dann wäre eben von jenen
Zeichen die Rede; es würde eine Beziehung zwischen ihnen
behauptet. Aber diese Beziehung bestände zwischen den Namen oder
Zeichen nur, insofern sie etwas benennen oder bezeichnen. Sie wäre
eine vermittelte durch die Verknüpfung jedes der beiden Zeichen
mit demselben Bezeichneten. Diese aber ist willkürlich. Man kann
keinem verbieten, irgendeinen willkürlich hervorzubringenden
Vorgang oder Gegenstand zum Zeichen für irgend etwas anzunehmen.
Damit würde dann ein Satz a=b nicht mehr die Sache selbst sondern
nur noch unsere Bezeichnungsweise betreffen; wir würden keine
eigentliche Erkenntnis darin ausdrücken. Das wollen wir aber doch
grade in vielen Fällen. Wenn sich das Zeichen "a" von dem Zeichen
"b" nur als Gegenstand (hier durch die Gestalt) unterscheidet,
nicht als Zeichen; das soll heißen: nicht in der Weise, wie es
etwas bezeichnet: so würde der Erkenntniswerth von a=a wesentlich
gleich dem von a=b sein, falls a=b wahr ist. Eine Verschiedenheit
kann nur dadurch zustande kommen, daß der Unterschied des Zeichens
einem Unterschiede in der Art des Gegebenseins des Bezeichneten
entspricht. Es seien a, b, c die Geraden, welche die Ecken eines
Dreiecks mit den Mitten der Gegenseiten verbinden. Der
Schnittpunkt von a und b ist dann derselbe wie der Schnittpunkt
von b und c. Wir haben also verschiedene Bezeichnungen für
denselben Punkt, und diese Namen ("Schnittpunkt von a und b",
"Schnittpunkt von b und c") deuten zugleich auf die Art des
Gegebenseins, und daher ist in dem Satze eine wirkliche Erkenntnis
enthalten.
Es liegt nun nähe, mit einem Zeichen (Namen, Wortverbindung,
Schriftzeichen) außer dem Bezeichneten, was die Bedeutung des
Zeichens heißen möge, noch das verbunden zu denken, was ich den
Sinn des Zeichens nennen möchte, worin die Art des Gegebenseins
enthalten ist.
27
Es würde danach in unserem Beispiele zwar die
Bedeutung der Ausdrücke "der Schnittpunkt von a und b" und "der
Schnittpunkt von b und c" dieselbe sein, aber nicht ihr Sinn. Es
würde die Bedeutung von "Abendstern" und "Morgenstern" dieselbe
sein, aber nicht der Sinn.
Aus dem Zusammenhange geht hervor, daß ich hier unter "Zeichen" und
"Namen" irgendeine Bezeichnung verstanden habe, die einen
Eigennamen vertritt, deren Bedeutung also ein bestimmter
Gegenstand ist (dies Wort im weitesten Umfange genommen), aber
kein Begriff und keine Beziehung, auf die in einem anderen
Aufsatze näher eingegangen werden soll. Die Bezeichnung eines
einzelnen Gegenstandes kann auch aus mehreren Worten oder
sonstigen Zeichen bestehen. Der Kürze wegen mag jede solche
Bezeichnung Eigenname genannt werden.
Der Sinn eines Eigennamens wird von jedem erfaßt, der die Sprache
oder das Ganze von Bezeichnungen hinreichend kennt, der er
angehört; Die Gleichheit 2 damit ist die Bedeutung aber, falls sie vorhanden
ist, doch immer nur einseitig beleuchtet. Zu einer allseitigen
Erkenntniß der Bedeutung würde gehören, daß wir von jedem
gegebenen Sinne sogleich angeben könnten, ob er zu ihr gehöre.
Dahin gelangen wir nie.
Die regelmäßige Verknüpfung zwischen dem Zeichen, dessen Sinn und
dessen Bedeutung ist der Art, daß dem Zeichen ein bestimmter Sinn
und diesem wieder eine bestimmte Bedeutung entspricht, während zu
einer Bedeutung (einem Gegenstande) nicht nur ein Zeichen
zugehört. Derselbe Sinn hat in verschiedenen Sprachen, ja auch in
derselben verschiedene Ausdrücke. Freilich kommen Ausnahmen von
diesem regelmäßigen Verhalten vor. Gewiß sollte in einem
vollkommenen Ganzen von Zeichen jedem Ausdrucke ein bestimmter
Sinn entsprechen; aber die Volkssprachen
28 erfüllen diese Forderung vielfach nicht, und man muß zufrieden
sein, wenn nur in demselben Zusammenhange dasselbe Wort immer
denselben Sinn hat. Vielleicht kann man zugeben, daß ein
grammatisch richtig gebildeter Ausdruck, der für einen Eigennamen
steht, immer einen Sinn habe. Aber ob dem Sinne nun auch eine
Bedeutung entspreche, ist damit nicht gesagt. Die Worte "der von
der Erde am weitesten entfernte Himmelskörper" haben einen Sinn;
ob sie aber auch eine Bedeutung haben, ist sehr zweifelhaft. Der
Ausdruck "die am wenigsten convergente Reihe" hat einen Sinn; aber
man beweist, daß er keine Bedeutung hat, da man zu jeder
convergenten Reihe eine weniger convergente, aber immer noch
convergente finden kann. Dadurch also, daß man einen Sinn auffaßt,
hat man noch nicht mit Sicherheit eine Bedeutung.
Wenn man in der gewöhnlichen Weise Worte gebraucht, so ist das,
wovon man sprechen will, deren Bedeutung. Es kann aber auch
vorkommen, daß man von den Worten selbst oder von ihrem Sinne
reden will. Jenes geschieht z.B., wenn man die Worte eines Anderen
in gerader Rede anfährt. Die eigenen Worte bedeuten dann zunächst
die Worte des Andern, und erst diese haben die gewöhnliche
Bedeutung. Wir haben dann Zeichen von Zeichen. In der Schrift
schließt man in diesem Falle die Wortbilder in Anführungszeichen
ein. Es darf also ein in Anführungszeichen stehendes Wortbild
nicht in der gewörhnlichen Bedeutung genommen werden.
Wenn man von dem Sinne eines Ausdrucks ,A' reden will so kann man
dies einfach durch die Wendung "der Sinn des Ausdrucks ,A'". In
der ungeraden Rede spricht man von dem Sinne z. B. der Rede eines
Andern. Es ist daraus klar, daß auch in dieser Redeweise die Worte
nicht ihre gewöhnliche Bedeutung haben, sondern das bedeuten, was
gewöhnlich ihr Sinn ist. Um einen kurzen Ausdruck zu haben, wollen
wir sagen: die Wörter werden in der ungeraden Rede UNGERADE
gebraucht, oder haben ihre UNGERADE Bedeutung. Wir unterscheiden
dem nach die GEWÖHNLICHE Bedeutung eines Wortes von seiner
UNGERADEN und seinen GEWÖHNLICHEN Sinn von seinem UNGERADEN Sinne.
Die ungerade Bedeutung eines Wortes ist also sein gewöhnlicher
Sinn. Solche Ausnahmen muß man immer im Auge behalten, wenn man
die Verknörpfungsweise von Zeichen, Sinn und Bedeutung im einzelnen
Falle richtig auffassen will.
29
Von der Bedeutung und dem Sinne eines Zeichens ist die mit ihm
verknüpfte Vorstellung zu unterscheiden. Wenn die Bedeutung eines
Zeichens ein sinnlich wahrnehmbarer Gegenstand ist, so ist meine
Vorstellung davon ein aus Erinnerungen von Sinneseindrücken, die
ich gehabt habe, und von Thätigkeiten, inneren sowohl wie äußern,
die ich ausgeübt habe, entstandenes inneres Bild. 3 Dieses ist
oft mit Gefühlen getränkt; die Deutlichkeit seiner einzelnen
Theile ist verschieden und schwankend. Nicht immer ist, auch bei
demselben Menschen, dieselbe Vorstellung mit demselben Sinne
verbunden. Die Vorstellung ist subjectiv: die Vorstellung des
Einen ist nicht die des Andern. Damit sind von selbst mannigfache
Unterschiede der mit demselben Sinne verknüpften Vorstellungen
gegeben. Ein Maler, ein Reiter, ein Zoologe werden wahrscheinlich
sehr verschiedene Vorstellungen mit dem Namen "Bucephalus"
verbinden.
Die Vorstellung unterscheidet sich dadurch wesentlich
von dem Sinne eines Zeichens, welcher gemeinsames Eigenthum von
Vielen sein kann und also nicht Theil oder Modus der Einzelseele
ist; denn man wird wohl nicht leugnen können, daß die Menschheit
einen gemeinsamen Schatz von Gedanken hat, den sie von einem
Geschlechte auf das andere überträgt. 4
Während es dem nach keinem Bedenken unterliegt, von dem Sinne
schlecht weg zu sprechen, muß man bei der Vorstellung genau
genommen hinzufügen, wem sie angehört und zu welcher Zeit. Man
könnte vielleicht sagen: ebensogut, wie mit demselben Worte der
Eine diese, der Andere jene Vorstellung verbindet, kann auch der
Eine diesen, der Andere jenen Sinn damit verknüpfen. Doch besteht
der Unterschied dann doch nur in der Weise dieser Verknüpfung. Das
hindert nicht, daß beide denselben Sinn auffassen; aber dieselbe
Vorstellung können sie nicht haben. SI DUO IDEM
FACIUNT, NON EST IDEM.
30
Wenn zwei sich dasselbe vorstellen, so hat
jeder doch seine eigene Vorstellung. Es ist zwar zuweilen möglich,
Unterschiede der Vorstellungen, ja der Empfindungen verschiedener
Menschen festzustellen; aber eine genaue Vergleichung ist nicht
möglich, weil wir diese Vorstellungen nicht in demselben
Bewußtsein zusammen haben können.
Kehren wir nun zu unserem Ausgangspunkte zurück!
Wenn wir den Erkenntniswert von "a=a" und "a=b" im Allgemeinen
verschieden fanden, so erklärt sich das dadurch, daß für den
Erkenntniswerth der Sinn des Satzes, nämlich der in ihm
ausgedrückte Gedanke, nicht minder in Betracht kommt als seine
Bedeutung, das ist sein Wahrheitswerth. Wenn nun a=b st, so ist
zwar die Bedeutung von "b" dieselbe wie die von "a" und also auch
der Wahrheitswerth von "a=b" derselbe wie von "a=a". Trotzdem
kann der Sinn von "b" von dem Sinn von "a" verschieden sein, und
mithin auch der in "a=b" ausgedrückte Gedanke verschieden von dem
"a=a" ausgedrückten sein; dann haben beide Sätze auch nicht
denselben Erkenntniswerth. Wenn wir wie oben, unter "Urtheil"
verstehen den Fortschritt vom Gedanken zu dessen Wahrheitswerthe,
so werden wir auch sagen, daß die Urtheile verschieden sind.
Fußnoten
1g
Ich brauche dies Wort im Sinne von Identität und verstehe "a=b" in
dem Sinne von "a ist dasselbe wie b" oder "a und b fallen
zusammen."
2
Bei einem eigentlichen Eigennamen wie "Aristoteles" können
freilich die Meinungen über den Sinn auseinander gehen. Man könnte
z.B. als solchen annehmen: der Schüler Platos und Lehrer
Alexanders des Großen. Wer dies thut, wird mit dem Satze
"Aristoteles war aus Stagira gebürtig" einen anderen Sinn
verbinden als einer, der als Sinn dieses Namens annähme: der aus
Stagira gebürtige Lehrer Alexanders des Großen. Solange nur die
Bedeutung dieselbe bleibt, lassen sich diese Schwankungen des
Sinnes ertragen, wiewohl auch sie in dem Lehrgebäude einer
beweisenden Wissenschaft zu vermeiden sind und in einer
vollkommenen Sprache nicht vorkommen därften.
3
Wir können mit den Vorstellungen gleich die Anschauungen
zusammennehmen, bei denen die Sinneseindrücke und die Thätigkeiten
selbst an die Stelle der Spuren treten, die sie in der Seele
zurückgelassen haben. Der Unterschied ist für unseren Zweck
unerheblich, zumal wohl immer neben den Empfindungen und
Thätigkeiten Erinnerungen von solchen das Anschauungsbild
vollenden helfen. Man kann unter Anschauung aber auch einen
Gegenstand verstehen, sofern er sinnlich wahrnehmbar oder räumlich
ist.
4
Darum ist es unzweckmäßig, mit dem Worte "Vorstellung" so
Grundverschiedenes zu bezeichnen.
|
References
Barcan, R. C. (1946). " A functional calculus of first order based on strict implication." The Journal of Symbolic Logic, 11(01), 1-16.
Barcan, R. C. (1946). " The deduction theorem in a functional calculus of first order based on strict implication." The Journal of Symbolic Logic, 11(04), 115-118.
Barcan, R. C. (1947). " The identity of individuals in a strict functional calculus of second order." The Journal of Symbolic Logic, 12(01), 12-15.
Carnap, R. (1946). Meaning and necessity: a study in semantics and modal logic. University of Chicago Press.
Kripke, Saul. 1971. "Identity and Necessity." In Munitz 1971, 135-164.
Kripke, Saul. 1981. " Naming and Necessity." Blackwell Publishing.
Marcus, R. B. (1961). Modalities and intensional languages. Synthése, 13(4), 303-322.
Munitz, Milton, ed. 1971. Identity and Individuation. New York: New York University Press.
Salmon, Nathan. 1986. Frege's Puzzle. Cambridge: Bradford.
Quine, W. V. 1943. "Notes on Existence and Necessity." The Journal of Philosophy, 40 (5) p.113
Quine, W. V. 1947. "The Problem of Interpreting Modal Logic." The Journal of Symbolic Logic 12 (2) p.43
Quine, W. V. 1980. From a Logical Point of View, 2d ed. Cambridge, MA: Harvard University Press.
Wiggins, David. 2001. Sameness and Substance Renewed. Cambridge University Press.
Williamson, T. (2002). "Necessary existents." Royal Institute of Philosophy Supplement, 51, 233-251.
Chicago
Normal | Teacher | Scholar
|